Differential behaviors toward ultraviolet A and B radiation of fibroblasts and keratinocytes from normal and DNA-repair-deficient patients.

نویسندگان

  • A I Otto
  • L Riou
  • C Marionnet
  • T Mori
  • A Sarasin
  • T Magnaldo
چکیده

Xeroderma pigmentosum (XP) and trichothiodystrophy (TTD) are rare genodermatoses transmitted as recessive and autosomal traits that result in reduced capacity to repair UV-induced DNA lesions. Although XP, but not TTD, patients are prone to basal and squamous cell carcinomas, to date no comparative studies of the XP and TTD phenotypes have included epidermal keratinocytes. We compared the DNA repair capacity (by unscheduled DNA synthesis) and cell survival (by clonal analysis) of epidermal keratinocytes and dermal fibroblasts grown from normal individuals and patients with xeroderma pigmentosum and trichothiodystrophy following UVA and UVB irradiation. The same dose of UVB (1000 J/m2) induced twice as many DNA lesions in normal fibroblasts as in normal keratinocytes. UV survival rates were always higher in keratinocytes than in fibroblasts. Normal and TTD keratinocytes survived better following UVA and UVB irradiation than XP-C and XP-D keratinocytes. XP-C keratinocytes exhibited exacerbated sensitivity toward UVA radiation. Unscheduled DNA synthesis at UV doses leading to 50% cell survival indicated that the ratio of DNA repair capacity to cell survival is higher in keratinocytes than in fibroblasts. In addition, UVA and UVB irradiation induced a transition from proliferative to abortive keratinocyte colonies. This transition varied between donors and was in part correlated with their cancer susceptibility. Altogether these data provide the first evidence of the differential behaviors of normal, XP, and TTD keratinocytes toward UV radiation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Silymarin Protects Epidermal Keratinocytes from Ultraviolet Radiation-Induced Apoptosis and DNA Damage by Nucleotide Excision Repair Mechanism

Solar ultraviolet (UV) radiation is a well recognized epidemiologic risk factor for melanoma and non-melanoma skin cancers. This observation has been linked to the accumulation of UVB radiation-induced DNA lesions in cells, and that finally lead to the development of skin cancers. Earlier, we have shown that topical treatment of skin with silymarin, a plant flavanoid from milk thistle (Silybum ...

متن کامل

The Effect of Short-Range Radiation of Type C and B Ultraviolet on the Mechanical Properties of Skin Fibroblasts

The effect of UV beam, which has been emitted from a natural or a manmade source on cells has been studied in previous studies for several times. Radiation of this beam can have different effects on DNA of the cell, cytotoxicity, the structure of cellular proteins and their mechanical properties based on radiation period or frequency. The effect of radiation of two types of beams, namely UVB an...

متن کامل

Proficient global nucleotide excision repair in human keratinocytes but not in fibroblasts deficient in p53.

The p53 tumor suppressor protein is important for many cellular responses to DNA damage in mammalian cells, but its role in regulating DNA repair in human keratinocytes is undefined. We compared the nucleotide excision repair (NER) response of human fibroblasts and keratinocytes deficient in p53. Fibroblasts expressing human papillomavirus 16 E6 oncoprotein had impaired repair of UV radiation-i...

متن کامل

Inherent radiosensitivity and its impact on breast cancer chemo-radiotherapy

About 10% of apparently normal individuals are sensitive to clastogenic effects of physico-chemical agents. More than 45% of breast cancer patients’ exhibit elevated radiosensitivity. Although the nature of inherent radiosensitivity is not fully understood, but insufficiency and impaired DNA repair mechanism might be prime cause of radiosensitivity. This is evident from genetically affect...

متن کامل

Hypersensitivity of skin fibroblasts from basal cell nevus syndrome patients to killing by ultraviolet B but not by ultraviolet C radiation.

Basal cell nevus syndrome (BCNS) is an autosomal dominant genetic disorder in which the afflicted individuals are extremely susceptible to sunlight-induced skin cancers, particularly basal cell carcinomas. However, the cellular and molecular basis for BCNS is unknown. To ascertain whether there is any relationship between genetic predisposition to skin cancer and increased sensitivity of somati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cancer research

دوره 59 6  شماره 

صفحات  -

تاریخ انتشار 1999